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Interaction-tuned compressible-to-incompressible phase transitions in quantum Hall systems
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We analyze transitions between quantum Hall ground states at prominent filling factors v in the spherical
geometry by tuning the width parameter of the Zhang-Das Sarma interaction potential. We find that incom-
pressible ground states evolve adiabatically under this tuning, whereas the compressible ones are driven
through a first-order phase transition. Overlap calculations show that the resulting phase is increasingly well
described by appropriate analytic model wave functions (Laughlin, Moore-Read, Read-Rezayi). This

scenario is

shared by both odd (v=1/3,1/5,3/5,7/3,11/5,13/5) and even denominator states

(v=1/2,1/4,5/2,9/4). In particular, the Fermi-liquid-like state at v=1/2 gives way, at large enough value of
the width parameter, to an incompressible state identified as the Moore-Read Pfaffian on the basis of its

entanglement spectrum.
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We address in this work, via large-scale exact diagonal-
ization (ED) calculations on finite spheres, the important and
interesting question of how to tune various fractional quan-
tum Hall (FQH) ground states between ungapped compress-
ible and gapped incompressible phases by continuously vary-
ing the effective electron-electron interaction. Such
numerical studies have been a standard theoretical tool in
FQH physics since the beginning' because of the nonpertur-
bative nature of the FQH ground states. In the current work,
which is complementary to the pseudopotential description
of quantum phase transitions (QPTs) in quantum Hall sys-
tems as pioneered by Morf? and Haldane,®> we report that a
simple single-parameter parametrization of the effective in-
teraction through the so-called Zhang-Das Sarma (ZDS)
model* provides a flexible and powerful method of studying
QPTs between compressible and incompressible phases at
both even and odd-denominator FQH states. We will show
that ZDS interaction possesses a rich structure that can drive
the FQH system from parameter regions where it appears to
be compressible (manifested by the ground state that breaks
rotational invariance, i.e., the value of angular momentum
L+#0) toward the incompressible region where the ground
state is rotationally invariant (L=0), along with the corre-
sponding overlap with the trial states like Laughlin' or paired
states (Moore-Read Pfaffian,> Read-Rezayi,® etc.) jumping to
a value close to unity and an energy gap opening up in the
excitation spectrum. In agreement with the experimental
phenomenology, we find that the well-known (small) odd-
denominator incompressible FQH states (e.g., 1/3, 1/5, 7/3,
and 11/5) are robust and usually do not manifest any
interaction-tuned QPT whereas the more fragile, even de-
nominator (e.g., 1/2, 1/4, 5/2, and 9/4) FQH states typically
exhibit characteristic QPT from a compressible to an incom-
pressible phase as the Coulomb interaction is softened by
increasing the ZDS tuning parameter.

Our calculations are performed in the spherical geometry
introduced and described in detail by Haldane;® here, we
make only a few essential comments. We consider spin to be
fully polarized and use the ZDS model interaction which was
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PACS number(s): 73.43.Cd, 73.21.Fg, 71.10.Pm

originally proposed to study the finite-thickness effect of the
quasi-two-dimensional (2D) layer,* but in our analysis, the
thickness parameter w (expressed in units of the rescaled
magnetic length, [) enters simply as the tuning parameter
for the Hamiltonian,

Vips() = . (1)
N+ w

We emphasize that ZDS interaction (1) appears to have
the same qualitative pseudopotential decomposition as the
realistic models (e.g., the Fang-Howard, infinite square well,
etc.), as has recently been shown in details in Ref. 7. How-
ever, it was also observed in Ref. 8 that realistic confinement
models do not always reproduce the QPTs induced by the
ZDS interaction, suggesting there may be subtle quantitative
differences between ZDS and alternative confinement mod-
els which are important in the vicinity of a QPT. In this
Rapid Communication we focus on the ZDS model in carry-
ing out our ED studies since a single parameter enables us to
study FQH QPTs in a compact manner. In order to establish
the connection with the experiments, we should mention that
w in the ZDS model corresponds roughly to the root-mean-
square fluctuation in the electron coordinate in the transverse
direction.”

With this choice of the interaction, we use the overlap
between the exact, numerically diagonalized finite system,
and a candidate analytical wave function (e.g., the Laughlin
or the Moore-Read wave function) to determine the tentative
quantum phase of the system, i.e., if the overlap is “large”
(“small”), the system is supposed to be in the candidate state
(or not). We calculate the overlap as a continuous function of
the varying Hamiltonian which is being tuned by w. All the
model wave functions studied in this Rapid Communication
are Jack polynomials that have squeezable configurations’
which can be efficiently generated and compared with the
exact ground state. Note that each FQH state on a finite
sphere at the filling factor v is characterized, beside the num-
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FIG. 1. (Color online) Overlap [(W | W ,co)| between the exact
Coulomb state for finite width (ZDS model) at v=1/3 and the
Laughlin wave-function N=4-12 particles. Inset: same quantity but
in the first-excited Landau level, i.e., v=7/3.

ber of electrons N and the number of flux quanta N4, also by
a topological invariant & called shift, defined by N,= vIN
+ 8. In the thermodynamic limit of an infinite plane, the shift
plays no role, but for a finite sphere it is a crucial aspect of
the ED technique?® as it can lead to an “aliasing”!® problem:
at a fixed choice of (N4,N), more than one quantum Hall
state (having different v, & and, therefore, different physical
properties) may be realized. To avoid such loss of uniqueness
for finite sphere ED, we disregard the aliased states from our
considerations. Notwithstanding the aliasing problem, the
system sizes we analyze are the largest that can be presently
handled in ED studies.

We begin with the Laughlin fractions »=1/3 and v=1/5
in the lowest Landau level (LLL) and in the first-excited
Landau level (v=2+1/3,2+1/5) (Figs. 1 and 2). In agree-
ment with previous studies,’ in the LLL we find that the ZDS
potential leads to the monotonous decrease in the overlap
with the Laughlin wave function with increasing the thick-
ness parameter w.

In the second Landau level (SLL) and for zero thickness
(Figs. 1 and 2 inset) one first notices that the Laughlin 1/5
wave function appears to be a better candidate than the one
for 1/3. Furthermore, certain particle numbers yield zero
overlap for v=7/3 (for N=5 particles, the ground state is
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FIG. 2. (Color online) Overlap [(W} | W qcr)| between the exact
Coulomb state for finite width (ZDS model) at v=1/5 and the
Laughlin wave function for N=4-9 particles. Inset: same quantity
but in the first-excited Landau level, i.e., v=11/5.
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FIG. 3. (Color online) Overlap [(Wp¢| Wgacr)| between the exact
Coulomb state for finite width (ZDS model) at v=1/2 and the
Pfaffian for N=8—18 particles. Inset: same quantity but in the first-
excited Landau level, i.e., »=5/2. Only nonaliased states are
shown. Note: the critical width of the QPT increases with system
size; however, for the three available points and N— o, it extrapo-
lates to a value of 4/p.

obtained in L=2 sector; therefore, the overlap with the
Laughlin wave function is zero due to the difference in sym-
metry). Things change once the ZDS potential is turned on:
the states which are homogeneous (L=0) increase their over-
lap, while the finite-size artifact N=5 undergoes a QPT turn-
ing into an L=0 state just under w<Ip.

It will be shown in what follows that the induced QPT for
N=5, v=7/3 is not an exceptional case.!! Even denominator
fractions, such as v=5/2 which is believed to be the Moore-
Read Pfaffian’ or the recently discovered v=1/4,'% and vari-
ous paired states of the Read-Rezayi sequence® such as
v=12/5,13/5, attract considerable attention because of their
unusual ground states and the exotic spectrum of excitations
that may be utilized in topological quantum computation.'3
While their realization in the SLL seems a likely possibility,
there has been little expectation to observe them in the con-
ditions of the LLL (see however Ref. 14.). In particular, at
the thin single layer v=1/2 in the LLL only the compress-
ible, Fermi-liquid-like state has been observed. In Fig. 3 we
show the overlap results of finite-size calculations on
v=1/2 in the LLL and »=5/2 in the SLL with ZDS
interaction.

At v=1/2 a QPT is induced by increasing the parameter
w. Certain particle numbers yield good overlap already for
zero thickness and their overlap will improve as w increases.
Other particle numbers produce ground states with well-
defined values of L >0 that undergo a QPT at a critical value
of the thickness. For »=5/2, the Coulomb ground state for
zero thickness is already reasonably well approximated!>-!6
by the Moore-Read Pfaffian and the effect of ZDS interac-
tion is only to increase the overlap in a smooth way. How-
ever, the increase is substantial—up to 20% for the largest
system amenable to ED. This adiabatic continuity of the
Moore-Read description for the SLL »=5/2 has been dis-
cussed in Ref. 16 and recently at great length by Storni
et al."’

The nonzero values of L that appear at v=1/2 in the LLL
can be fully understood from the CF theory.'® Indeed, former
work hinted at the possibility of p-wave paired CF state as a
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FIG. 4. (Color online) Overlap [{Wye(w=0)| ¥ eyae(w))| be-
tween the exact Coulomb state for finite width (ZDS model) at
v=1/2 and the CF sea state defined to be exact Coulomb ground
state for zero thickness. Red circles represent filled CF shells
(N=n?, n=3,4), blue triangles are the lowest excited states
AN=N-n?*==*1 and so on.

result of CF sea being perturbed by ZDS interaction.'” How-
ever, in Ref. 19 only the variational energies of trial states
were compared. In Fig. 4 we will show that one can establish
a connection between the ZDS-induced QPT and the Pfaffian
and CF sea states in the LLL at v=1/2.

Because the CF sea state and the Moore-Read Pfaffian
occur at different shifts on the sphere (-2 and -3, respec-
tively), one cannot simultaneously study their evolution with
w. However, by analyzing the excitations of CF sea occur-
ring at the Pfaffian shift, one can show (using Hund’s rule)
that the L values obtained in ED ar the Pfaffian shift (Fig. 3)
are indeed those stemming from the CF sea excitations.
Moreover, assuming that the Coulomb ground state in the
LLL for zero thickness is exceedingly well approximated by
Rezayi-Read wave function,?® we define the CF sea state for
our purposes as the interacting Coulomb ground state for
zero thickness and study its overlap with the w=0 ground
states (Fig. 4). CF theory tells us that (at the shift of —2) the
L=0 configurations are obtained when the CF shells are
completely filled, i.e., for N=n?, n=1,2,3,... These con-
figurations are particularly robust and adding/subtracting
electrons from them (AN=N-n?==*1,*2,...) creates a
configuration that is destroyed at some critical value of the
width which depends on how far away the system is from the
filled shell. Obviously, there is ambiguity in defining pre-
cisely the critical width where the CF sea is destroyed, but
this argument nonetheless provides further support for the
claim that the ZDS-induced compressible-incompressible
transition indeed proceeds via destruction of CF sea toward
the Moore-Read Pfaffian. Transition of the same kind can be
relevant for the multicomponent candidates®' at v=3/8. We
emphasize that the possible finite-width-induced LLL v
=1/2 FQH state that we find arising out of the destabiliza-
tion of the CF sea, even if it exists, is likely to be extremely
fragile with a neutral excitation gap smaller than
0.03¢?/ el 3.'7 However, numerically extrapolated gap is gen-
erally known to be difficult to relate to the experimental
value,?? and in our data we cannot rule out the possibility
that it goes to zero in thermodynamic limit.
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FIG. 5. Entanglement spectrum of the exact ground state for
N=18 particles at v=1/2 in the LLL, just before (w//z=0.8) and
after (w/lz=1.0) the QPT, and the spectrum of Moore-Read Pfaff-
ian for comparison. Vertical axes show the quantity é=-log Ay,
where N, are the eigenvalues of the reduced density matrix of the
subsystem A which comprises of 8 particles and 15 orbitals, given
as a function of angular momentum L?. Data shown is only for the
partitioning denoted by [0]0] in Ref. 23; other sectors give a similar
result.

Another way to look at the QPT toward the Moore-Read
Pfaffian is to analyze the entanglement spectrum proposed in
Ref. 23. This is a powerful way to identify topological order
in the given ground-state wave function and establish a direct
connection with the underlying CFT that produces the given
ground state as its correlator and thus offering more informa-
tion than the simple overlap calculation.’* In Fig. 5 we show
the change in the entanglement spectrum for N=18 particles
at v=1/2 in the LLL, before and after QPT. For w <, there
is no visible CFT branch in the entanglement spectrum—the
generic Coulomb part dominates—leading to a likely com-
pressible ground state. After the QPT, a CFT branch sepa-
rates from the Coulomb part of the spectrum and the level
counting begins to match the first few Virasoro levels of the
Ising CFT. This is additional evidence in favor of the possi-
bility of a finite-width-induced QPT to an incompressible
half-filled single-layer LLL FQH state.

We have also examined the effect of ZDS potential on
other even denominator and paired states. In the LLL, a QPT
is induced for v=1/4 (Ref. 8) around w~3-5I; and for
Read-Rezayi v=3/5 state around w~4lp. In the SLL, a
v=9/4 state is similarly stabilized when ZDS parameter is
around w~ 3.

Our work establishes that the continuous tuning of the
interaction through the ZDS Hamiltonian enables a direct
study of FQH quantum phase transitions showing that the
usual odd-denominator states are robust in both the LLL and
the SLL, whereas the fragile even denominator FQH states
are stable only in a regime of the interaction strength where
the bare electron-electron interaction is considerably softer
than the pure 2D Coulomb interaction. We find that the ZDS
interaction allows for the existence of non-Abelian incom-
pressible FQH states even at unusual even fractions such as
1/2, 1/4, and 9/4, raising the intriguing possibility that such
exotic non-Abelian states may indeed exist if one can suffi-
ciently soften the interaction along the ZDS prescription.
Whether this can be physically achieved in 2D semiconduc-
tor systems remains an interesting open question and may
require some “reverse engineering” of the quasi-2D samples
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to achieve a suitable density profile using the fact that the
width parameter in the ZDS model corresponds roughly to
the variance of the electron position in the transverse direc-
tion.
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